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Abstract

An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case
of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory
in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when
they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear
equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to
investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin
plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear
stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made
of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations
by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the
consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the
Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the
three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse
stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical
solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these
are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse
and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending
and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of
a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1)
a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely
beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the
length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied
by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction
which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the
third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical
FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the
critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It
is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of
the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.
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The basic stages in the establishment of the non-linear theory of elasticity and, in particular, the non-linear theory
of shells, plates and columns mainly date back to the first half of the last century and were marked in the Russian
scientific literature by the coming to light of a series of remarkable monographs. Then, the fundamental equations of the
geometrically non-linear theory of elasticity, both for arbitrary as well as for small deformations and displacements, were
constructed by Novozhilov1 and analyzed with the utmost clarity and completeness. In the case of small deformations
but large displacements, the corresponding kinematic relations were later called the kinematic relations in the quadratic
approximation. At the present time, these relations are presented and used without any doubts as being absolutely true
and correct. According to these relations, the stretching and shear deformations are exactly equal to the difference in the
components of the metric tensor prior to and after the deformation of a body if the Lagrangian method is used to describe
them. The above mentioned difference in the components of the metric tensor, which are called the components of the
strain tensor, is therefore adopted as the most convenient as a measure both finite and small deformations in all the
current literature on the mechanics of a deformable solid and the correctness of this method of describing deformations
has not given rise to any doubts.

The need for a revision of the kinematic relations in the theory of elasticity constructed in the quadratic approximation
and, consequently, of all the non-linear equations in the mechanics of a deformable solid and, in particular, the two-
dimensional equations of the theory of shells based on the definition of their finite and small deformations in the form
of a difference in the components of the metric tensor prior to and after deformations of a body arose in connection with
the appearance of spurious points of bifurcation in the solution of specific problems which had been formulated2,4 using
the above-mentioned kinematic relations constructed in the quadratic approximation. An analysis of these relations
showed3,4 that, of them, the relations serving to determine the stretching deformations E� (� = 1, 2, 3)1 in the directions
of the coordinate lines x�, which are constructed with an accuracy E� + 2 ≈ 2, are inconsistent and incorrect. A consistent
version of the kinematic relations in the quadratic approximation was also constructed in Refs 3,4 and their use to
construct consistent refined equations to describe the planar deformations of a strip-column and in the membrane
theory of shells was subsequently described in Refs 5,6.

Analysis of the planar FLS of a column and the non-classical shear FLS of cylindrical shells, which were revealed
on the basis of the refined equations, led to unexpected results, previously unknown in the theory of the stability of
thin-walled structures, which enables us to formulate the following basic conclusions.

1. All the versions of the non-linear theory of shells, plates and columns for arbitrary displacements and rotations,
developed up to the present time, which are based both on the classical Kirchhoff - Love and Bernoulli - Euler
models as well as on refined models (in particular, Timoshenko models) in which the deformations are defined as the
difference between the components of a metric tensor prior to and after deformation (see Refs 7–9, for example) are
incorrect and inconsistent, since their use to solve specific problems leads to the appearance of spurious bifurcation
points.

2. The well-known simplified versions of the theory of shells, plates and columns constructed by introducing some
constraints or other imposed on the displacements and rotations (the non-linear theory of the mean flexure,7–9 and
the non-linear theory of shallow shells) are correct and consistent. However, they only essentially enable one to
describe and investigate flexural FLS correctly.

3. The possibility of realizing some form of loss of stability of shells, plates and columns, of which certain non-classical
FLS have been described previously2,5,6 is completely determined by the form of the unperturbed stress-strain state,
and the magnitudes of the critical loads depend very much on the values of the elastic and stiffness parameters
of the material and the construction. Judging from the results obtained previously in Refs 5,6, the FLS for shells,
plates and columns made of isotropic materials which have been revealed are not, as a rule, of practical interest. In
this plan, the above-mentioned simplified versions of the non-linear theory of shells, based on the introduction of
some or other constraints on the displacements and rotations, are to be considered as being finished up to a specified
degree of completion only in the case of thin-walled structures made of isotropic materials.

4. Since the values of the critical loads, corresponding to some FLS or other from those revealed earlier in Refs 5,6,
depend very much on the values of the shear moduli of the material then, in the light of all of the results which
have been obtained,3–6 there are, in the first place, pressing questions associated with the review, revision and
development of new refined versions of the theory of columns, plates and shells made of composite materials with
a low shear strength and also having a laminar structure.



774 V.N. Paimushin / Journal of Applied Mathematics and Mechanics 71 (2007) 772–805

It is well-known that, in the case of thin columns, plates and shells with a low shear strength, versions of the refined
theory based on the Timoshenko model are simple and common. Up to the present time, many publications have
dealt with their discussion for thin shells in some geometrically non-linear approximations and, in particular, in Refs
8–10. However, the above-mentioned drawbacks are characteristic of all of them. The results obtained below should
be considered as the final result of a review of these versions.

1. Basic equations of the non-linear theory of thin, Timoshenko-type shells in the quadratic approximation

1.1. Kinematic relations

Introducing the triorthogonal system of curvilinear coordinates x1, x2, z, which is normally associated with the
middle plane of a shell �, we adopt the following notation: Ai, and ki are the Lamé parameters in the plane � and the
principal curvatures, Hi = Ai (1 + zki) are the Lamé parameters at an arbitrary point of the space of the shell at a distance
z from �, measured in the direction of the unit normal m to � and ei are the unit vectors in � which, with the vector m,
constitute a right-handed basis (i = 1, 2).

If the vector of the displacements U of an arbitrary point M(xi, z) is represented by the expansion U = Uiei + U3m,
then, in the case of small stretching strains �1, �2, �3 and arbitrary shear strains sin �12, sin �13, sin �23, the following
consistent kinematic relations hold in the quadratic approximations4,5:

(1.1)

In the case of a thin shell, when the approximate equalities Hi ≈ Ai occurring in relations (1.1) are taken with an
accuracy 1 + zki ≈ 1, the quantities E�� are determined using the formulae

(1.2)

in which (. . .),i = ∂(. . .)/∂xi.
Henceforth, unless otherwise stated, the Latin indices i, j, k and s take the values of 1 and 2, and the Greek indices

� and � take the values 1, 2 and 3.
With the aim of reducing the initial three-dimensional equations of the theory of elasticity to the two-dimensional

equations of the theory of shells and plates, we will adopt the following approximations for the displacements occurring
in relations (1.2)

(1.3)

that correspond to the well-known refined Timoshenko model which, up to the present time, has been thoroughly
studied within the framework of the initial three-dimensional kinematic relations of the theory of elasticity written for
some degree of approximation.8–12

The following expressions for E�� correspond to the approximations (1.3)

(1.4)

in which

(1.5)

If we restrict ourselves to the degree of accuracy in the approximation of the strains in the direction of the z axis which
has previously been accepted (in Refs 8–12 and other papers), then, on substituting expressions (1.3) into relations
(1.1), we arrive at the kinematic relations

(1.6)
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(1.7)

(1.8)

where

(1.9)

(1.10)

In the scientific literature on the non-linear mechanics of shells, the relations

(1.7a)

(1.9a)

(1.10a)

are presented for the Timoshenko model instead of relations (1.7), (1.9) and (1.10), while the derived formulae (1.9)
and (1.10) can be represented more compactly in the form

(1.9b)

(1.10b)

where (there is no summation over j) ej = ejjejj, �j = ejj�jj.
Generally speaking, relations (1.7)–(1.10) hold for arbitrary displacements and finite shear strains but for small

stretching strains, in all directions of the coordinate axes. The expressions for �ii, �3, �ii presented in them only differ
slightly in form from the analogous expressions in (1.7a), (1.9a) and (1.10a) but are fundamentally different in content.
This difference is associated with the fact that, in expressions (1.7), (1.9) and (1.10), there are no non-linear terms,
which lead to the appearance of spurious bifurcation points in the solution of specific problems. This property of the
derived relations is due to the correctness of the initial three-dimensional kinematic relations (1.1) on which they are
based and some or other of the terms in them can only be neglected in special cases, which are determined by the form
of the stress state of a shell, that occurs during the loading process, as can be shown starting from an analysis of earlier
results.5,6

1.2. The equilibrium equations

We will assume that the boundary cuts of an open shell in the � plane are bounded by the coordinate lines xi = xi−, xi+
in which the vectors of the linear contour stresses and moments

(1.11)

are specified and, at points of the surface �, the vectors of the surface stresses and moments which have been reduced
to it

(1.12)

and refer to unit area of the surface �, are specified. The variation of the work of these force and moments will be equal
to

(1.13)
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where

(1.14)

If the linear internal stresses and moments (2h is the thickness of the shell)

(1.15)

reduced to the surface �, are introduced into the treatment, the formula

(1.16)

holds for the variation of the strain potential energy of a thin shell. On introducing expressions (1.7), (1.8)–(1.10) here
and the notation for the stresses

(1.17)

and moments

(1.18)

we obtain

(1.19)

Using expressions (1.13) and (1.19) and taking account of relations (1.10) and (1.12), we now set up the variational
equation of the principle of virtual displacements

(1.20)

from which the system of six differential equilibrium equations

(1.21)

(1.22)

follows and the static boundary conditions on the shell edges x′
i = xi−, xi = xi+

(1.23)

Note that expressions (1.17) and (1.18) for the stresses and moments introduced into the treatment, which occur in
Eqs (1.20)–(1.22) and the static boundary conditions (1.23), also differ from the corresponding expressions presented
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earlier (see for example, Refs 8–10). This difference, which is fundamental in relation to the richness of content and
correctness of the equations constructed in the theory of Timoshenko-type shells, is entirely due to the fact that there is
no �2/2 term in relation (1.7) and, in the first relations of (1.9) and (1.10), there are no terms e2

ii/2 and eii�ii respectively
(there is no summation over i).

1.3. Elasticity relations

We shall assume that the shell material is linearly elastic and orthotropic and that the axes of orthotropy coincide
with the axes of the chosen system of curvilinear coordinates. In the case of such a material, the components of the
stresses are related to the strain components by the generalized Hooke’s law relations13

(1.24)

in which G12, G13, G23 are the shear moduli in the corresponding planes and g�� are expressed in terms of the moduli
of elasticity E� and Poisson’s ratios v�� using the formulae

(1.25)

Substituting expressions (1.24) into equalities (1.15), we arrive at the two-dimensional elasticity relations for the
stresses and moments

(1.26)

in which the notation for the corresponding stiffnesses

(1.27)

has been introduced.

1.4. The basic equations of the theory of shells in the quadratic approximation, corresponding to the introduction
of the assumption that σ33 = 0

In the case of thin shells, use of the equality �33 = 0 corresponds to the assumption of the formation in them of a
planar stress-strain state (SSS). In this case, relations (1.24) of the generalized Hooke’s law can be represented in the
form

(1.28)

where

Introducing expression (1.7) into equalities (1.24), we obtain the formula

(1.29)

which, generally speaking, contradicts the initial approximation of the displacements and strains by expressions (1.3),
(1.6) and (1.7) since the function � is its left-hand side, which depends solely on x1 and x2, and the right-hand side
is a function of all three coordinates x1, x2, z. On account of this, it is inadvisable to use the last formula of (1.28)
and formulae (1.29) in the subsequent transformations of the basic equations which have been constructed in Sections
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(1.1)–(1.3). Nevertheless, the simplified relations

(1.30)

where

are used within the framework of the approximation �33 = 0, instead of the elasticity relations (1.26), in the mechanics
of thin shells.

When account is taken of the equality T33 = 0 instead of the last relations of (1.17), we shall have

(1.31)

while the first three relations of (1.17) and (1.18) remain unchanged.

2. Linearized neutral equilibrium equations of thin shells and their analysis

We will assume that, for a certain combination of external loads in an invariant direction, specified by the vectors
(1.11) and (1.12), a solution of the equations constructed in Section 1 is found in the form of displacement functions
u0

i , w
0
i , �0

i , �0, stress functions T 0
�� and the moments M0

ij . We linearize of the initial non-linear equations in the
neighbourhood of this solution, retaining the previous notation for the increments in the functions which have been
introduced into the treatment. As a result, assuming that the shell is stressed but undeformed up to its loss of stability,
we obtain a system of linearized neutral equilibrium equations of the form (1.22) in which X� = M� = 0 and

(2.1)

(2.2)

(2.3)

(2.4)

As previously, the elasticity relations (1.30), in which

(2.5)

hold for the stresses T�� and the moments Mij appearing in Eqs (2.1)–(2.4).
It can be seen from formulae (2.1)–(2.5) that, when they are used, the neutral equilibrium equations, expressed

in terms of the required functions ui, wi, �i, �, will have an extremely complex form. Their partial simplification is
only possible with the introduction of some assumptions concerning the initial SSS and the possible forms of loss of
stability of the shell. For example, in the case of the formation of only sheet subcritical stresses T 0

11, T
0
12, T

0
22 in a shell,

formulae (2.1)–(2.4) can be represented in the simplified form

(2.6)

if the underlined terms in relations (2.1) are neglected. If, moreover, the additional simplifying assumption �33 = 0 is
introduced in addition to (2.6) for the perturbed SSS in accordance with which T33 = 0 and, as in relations (1.30), taking
account of the equalities (2.5)
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then, after eliminating the function �, neutral equilibrium equations of the form

(2.7)

are obtained in which

(2.8)

Equations (2.7) only enable us to investigate flexural and the simplest shear FLS. As is well known, they correspond
to the use of the initial geometrically non-linear equations of the theory of the mean flexure of a shell8–10 when the use
of the simplified relations

(2.9)

instead of the kinematic relations (1.8)–(1.12) is admissible. However, if only stresses T 0
ij are formed in a shell which

corresponds to its initial zero-moment state, discarding of the underlined terms in relations (2.1) is equally inadmissible
which, as shown by an analysis of the results obtained earlier,5,6 leads to a loss of the richness of content of the neutral
equilibrium equations, which have been constructed as regards the possibility of describing and revealing a number
of other forms of loss of stability on the basis of these equations. The dropping of other parametric terms of the form
M0

11�13, . . . , T
0
i3eij, . . ., etc. in relations (2.1)–(2.4) when the parameters of the initial SSS of the form M0

ij, T
0
i3, T

0
33 are

formed in shells or plates is also inadmissible in the general case, as follows from an analysis of the previous results.5,6

The solutions of a number of new non-classical problems of the stability of shells and columns presented below
serve as a confirmation of the conclusion which has been formulated.

3. The stability of a circular ring in the case of pure shear

Consider a ring, which has a radius of the middle surface R, referred to by an angular coordinate x2 = �. We shall
assume that it finds itself due to conditions of pure shear due to the action of surface forces q applied to the faces z = ±h
and directed in opposite directions. We will assume that the equalities �0

11 = �11 = 0 hold in the axial direction x1 = x.
Elastic relations of the perturbed state of the following form

(3.1)

in which

(3.2)

hold for such a planar SSS and, on introducing the notation (. . .)′ = d(. . .)/d�, u2 = v, �2 = 	, we obtain formulae for
determining the components of the linear axial shear and flexural strains

(3.3)

In the case being considered, the external surface stresses and moments, occurring in the subcritical equilibrium
equation, have the form

and the internal stresses and moments of the initial unperturbed stress state in the initial approximation are determined
using the formulae

(3.4)
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By virtue of the formulae for the stresses and moments characterizing the perturbed SSS of the ring, we obtain

(3.5)

When formulae (3.5), which were constructed in Section 2, are used, the neutral equilibrium equations take the
form

(3.6)

in which, in accordance with relations (3.1) and (3.3),

(3.7)

3.1. The shear FLS of a ring with zero variability of the parameters of the perturbed SSS in a peripheral direction

The equations describing the FLS being considered follow from relations (3.3), (3.6) and (3.7) if we formally put
d(. . .)/d� = (. . .)′ = 0 in them. This is equivalent to the representation of the solutions of the above mentioned equations
in the form

(3.8)

from which, by analogy with what has been reported earlier,14 the solution when n = 0 corresponds to a shear FLS and
the solution when n = 2, 3, . . . to a flexural FLS.

When (. . .)′ = 0, from Eqs (3.6) taking account of equalities (3.7) we obtain the equations

from which the bifurcation value

(3.9)

corresponding to the shear FLS of the ring follows with an accuracy B33 + B22h2/(3R2) ≈ B33. Since G23 < E2, G23 < E3,
it follows from this that �∗s

23 > G23.
It should be mentioned that, when the initial simplifying assumption � = 0 is introduced, which is often used in the

literature when constructing refined models in the theory of shells, we only arrive at the trivial solution v = w = �2 = 0.
This result confirms the conclusion that making any simplifications to the non-linear equations of the theory of shells
and to the linearized equations of stability theory requires very great care and there must be serious grounds for doing
so. On the other hand, the solution v = w = 	 = 0, which results when � = 0, means that it is impossible to realize the
shear FLS being considered in a ring joined on its faces to bodies which are absolutely rigid in a radial direction.

3.2. The flexural FLS of a ring when n �= 0

The equations f2 = 0, f3 = 0 of system (3.6) can be represented in the form

(3.10)
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which, using the elasticity relations, we shall write in the form

(3.11)

By analogy with these equations, the last two equations of system (3.6), which are solved for the functions e22, �,

2, 	, take the form

(3.12)

The structure of Eq. (3.12) indicates that it is more convenient to represent the solutions of the problem being
considered in the form

When these representations from equations (3.11) are used, we obtain the equalities

(3.13)

Similarly, the differential equations (3.12) are reduced to algebraic equations and, after using relations (3.13) and
carrying out some reduction, take the form

(3.14)

Here,

The characteristic equation

(3.15)

gives the condition for the solution of system (3.14) to be non-trivial. Formula (3.9), which corresponds to a purely
shear FLS of the ring, follows from this characteristic equation when n = 0. When n �= 0, the determination of the
quantity 2hq

f
∗ , which corresponds to a flexural FLS, from Eq. (3.15) in the form of a compact formula is exceedingly

complicated. Taking account of the structure of equalities (3.13), we therefore represent the first integrals of Eq. (3.10)
in the form

and the formulae

(3.16)

follow from this when the elasticity relations are used.
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Now introducing expressions (3.16) into equalities (3.12), we arrive at the system of two differential equations

(3.17)

written with an accuracy B33 + B22h2/(3R2) ≡(. . .)′ = B33.
We shall seek its solution in the form

(3.18)

which corresponds to neglecting the underlined terms in system (3.17), which has practically no effect on the accuracy
of the results obtained in the theory of thin shells. We now introduce expressions (3.18) into system (3.17) and equate
the real parts of the resulting algebraic equations to zero, which leads to a system for which the characteristic equation
gives the condition for the solution to be non-trivial. If the subcritical stress T 0

23 occurring in this equation is expressed
in terms of the load parameter m in accordance with the formula

then the characteristic equation in m

(3.19)

is obtained, where

Since B22 ≈ B33 ≈ B̃33, v23 < 1, � � 1, the smallest positive value of the root m* of Eq. (3.19) is determined using
the formula

and corresponds to the loss of stability of the ring when n �= 0.
The results of calculations of the values of m* for different values of g2, g3, v23 and �, which characterize the

degree of orthotropy of the material and the relative thickness of the ring, are shown in Table 1. Since, according to the
representation which has been adopted q = T 0

23/(2h) = mqs∗, then, as follows from Table 1, the critical values of the

load q
f
∗ , corresponding to a flexural FLS, are significantly lower than the critical values qs∗ corresponding to a shear

FLS of the ring.
If the underlined terms in relations (3.5) are neglected, which is equivalent to the construction of the equations for

the neutral equilibrium of the ring starting out from the geometrically non-linear kinematic relations in their simplest
form, as has been adopted and is very widely used in the literature, then all the parametric terms in the resulting

Table 1

g2 10 200

g3 3 50 3 50

v23 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

� = 0.01

m
f
∗ × 103 12.12 10.97 7.90 3.16 16.79 16.98 0.518 0.475

� = 0.1

m
f
∗ × 102 11.80 10.69 7.88 3.15 9.88 9.83 33.87 31.65
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resolvents disappear. Consequently, the formulation of the problem of the stability of a ring under conditions of pure
shear on the basis of the geometrically non-linear equations of the theory of flexure of shells is, in general, impossible.

4. Equations and problems of the stability of columns, based on the use of kinematic relations in an
incomplete quadratic approximation

There are very extensive investigations associated with the construction of the geometrically non-linear equations
of the theory of elastic and inelastic columns in the case of arbitrary displacements and, also, with the study of their
FLS under the action of a different form of conservative and non-conservative loads. The fundamental results in this
domain are associated with the names of Euler, Nikolai, Dzhanedlidze, Feodos’ev, Bolotin, Pfluger and many others.
For information, we merely draw attention to the monograph of Bolotin15 in which certain historical information and
the results of the solution of a number of problems concerning the stability of columns under non-standard forms of
loading are presented. In particular, the problem of the stability of the planar form of bending of columns, which is
even presented in certain textbooks for a course on the strength of materials, and the problem of the stability of the
equilibrium of a twisted column can be included in such problems. It would appear that everything is extremely clear
and has been known for a long time in the field of the theory of stability of columns. However, the results obtained
below indicate that this is not so.

4.1. Neutral equilibrium equations

In rectangular Cartesian coordinates x1, x2, x3, kinematic relations in an incomplete quadratic approximation of the
following form2,3

(4.1)

hold for determining the stretching deformations of a column �1, �2, �3 and the shear strains �12, �13, �23.
When they are used, the relation2,3 between the stress components ��� in the deformed axes and the stress

components �0
�� in the undeformed axes xα

(4.2)

are established, where �∗
�� �= �∗

�� while ��� = ���.
If the equations based on the use of relations (4.1) and (4.2) are linearized in the neighbourhood of a certain initial

stress state with stress components �∗
��, formed under the action of conservative external forces, then the variational

equation

(4.3)

holds in the neutral equilibrium state without taking account of the parametric strain terms. In Eq. (4.3), the previous
notation has been retained for small increments in the displacements U�, the quantities E�� = ∂U�/∂x� and the stress
components �∗

�� but, unlike relations (4.2) and (1.24),

(4.4)

(4.5)

Next, introducing the notation x1 = x, �2 = y, x3 = z and assuming that, in each cross-section of the column x = const,
the y and z axes are principal central axes of inertia, we adopt the following representation for the displacement vector
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U = U1i + U2j + U3k

(4.6)

and, using this, we have

(4.7)

It should be noted that the representation adopted corresponds to the well-known Timoshenko kinematic model in
its simplest form which, when used in accordance with formulae (4.7), yields zero strain increments

(the kinematic hypotheses of the theory of columns). In addition to this, we adopt the hypotheses

which are classical in the theory of columns and, when used, lead to the Hooke’s law relation

As a result, assuming that �0
23 = 0 in the initial state and taking account of relations (4.7), instead of relations (4.4)

we obtain the reduced relations

(4.8)

and, on substituting expressions (4.7) into Eq. (4.3), we arrive at a variational equation of the form

(4.9)

where the following notation for the internal stresses and moments is introduced (henceforth, unless otherwise stated,
integration is carried out over the cross-section area of the bar F)

(4.10)

After standard reduction, the homogeneous neutral equilibrium equations of the column in stresses and moments

(4.11)

follow from the equality (4.9) and the boundary conditions in the sections x = 0, x = a

(4.12)

We will assume that the initial stresses �0
12, �0

13, �0
22, �0

33 appearing in relations (4.8) are specified by values which
have been averaged over a cross-section and that the initial normal stress �0

11 in the first approximation is determined
by the strength of materials formula

(4.13)

in which Q0
x, M

0
z , M0

y are the axial force and the internal bending moments in the cross-sections x = const, and Jy, Jz

are the moments of inertia of the cross-section with respect to the principal central axes.
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If it is assumed that the configuration of the cross-sections of a column satisfy the conditions

then, by virtue of the assumptions made, when expressions (4.8) are substituted into formulae (4.10), we arrive at
elastic relations of the following form

(4.14)

It is clear that, in the general case, when

on substituting expressions (4.14) into Eq. (4.11) a connected system of homogeneous differential equations in the six
required functions u, v, w, �, 	, � is obtained. Separation of the system is only possible in special cases of the loading
of the column, the treatment of which is of the greatest practical interest.

In particular, when �0
12 = 0, �0

13 = 0, the first equation of (4.11), which takes the form (E1Fu)′ = 0, will only have
a trivial solution and, when

the remaining equations can be represented in the form

(4.15)

(4.16)

(4.17)

where

(4.18)

It is seen that the torsional rigidity of a column made of an orthotropic material is characterized by the quantity Bp,
and Jp is the polar moment of inertia of a cross-section.

We will now consider the solutions of Eqs (4.15)–(4.17) for a number of special forms of loading of the column.

4.2. Uniform axial compression of a column by a stress σ0
11 = −p

Since Q0
x = −pF in the given case, Eqs (4.15)–(4.17) take the form

(4.19)

(4.20)

(4.21)

Solutions of equations of the type (4.19) and (4.20) are well known;16 in the case of a column with hinged edges
they yield four bifurcation values of the stress p

(4.22)
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and the previously unknown formula

(4.23)

corresponding to a purely torsional FLS, described by the function

(c1 and c2 are constants of integration), follows from equality (4.21) with the condition that � �= 0. If G13 = G12 = G,
formula (4.23) takes the form

Consequently, in the case of a column made of an isotropic material,

Note that formula (4.23) and the FLS corresponding to it are completely analogous to the results of the solution of a
problem considered earlier in Ref. 6 for a cylindrical shell in the case of its axial compression by a stress �0

11 = −p.

4.3. Compression of a column in transverse directions by stresses σ0
22 = −q2, σ

0
33 = −q3

In the case being considered, Eqs (4.15)–(4.17) take the form

(4.24)

(4.25)

(4.26)

Problems described by equations of the type of (4.24) and (4.25) are completely analogous to the problem of the planar
FLS of a strip-beam under transverse compression which was investigated earlier in Ref. 5. In the case of zero variability
of the functions appearing in these equations, their non-zero solutions 	 = const, w = 0 and � = const, v = 0 are
possible for the bifurcation values

(4.27)

which correspond to purely shear FLS. The other bifurcation values of the stresses

(4.28)

correspond to purely by flexural FLS. These formula are completely analogous to the formulae of the classical problem
of the stability of a column under axial compression by a force which is numerically equal to pF = q

(2)
3 F and

pF = q
(2)
2 F respectively.

If the load parameter q = q2 + q3 is introduced into the treatment, the previously unknown formula

(4.29)

for its bifurcation value follows from Eq. (4.26). This formula corresponds to a purely torsional FLS of the column,
which is described by the functions � = �0sin(�x/a) or � = �0cos(�x/a) and is completely analogous to the torsional
FLS of a cylindrical shell under the uniform external pressure which was investigated earlier in Ref. 6. The other FLS
of such a shell when, in the case of an external pressure, it is transformed after loss of stability into a cylindrical shell
with parallel sloping cuts,6 is analogous to the purely shear FLS of a column established above with bifurcation values
which are determined using formulae (4.27).

When G13 = G12 = G, formula (4.29) has been established earlier17 in the case when only a load q2 = 0 acts and
q3 = 0.

Introducing the parameter r = q2/q3, we rewrite formula (4.29) in the form
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whence it follows that, when r = −1 (that is, when the column is compressed in one of the transverse directions and
stretched in the other direction by equal forces),we have q

(3)
2 = ∞ (there is no loss of stability by a torsional FLS)

and, when r = 1, the magnitude of q
(3)
2 is halved. If, however, r = 0, then the inequality q

(3)
2 < q

(2)
2 can only be satisfied

when G13Jz = G12Jy < E1Jz, which can occur in the case of columns made of composite materials.

4.4. Pure bending of a column by end bending moments M0
z = m in the xz plane

By virtue of the conditions Q0
x = M0

y = �0
22 = 0, the system of equations (4.16) in the case being considered only

has a trivial solution and, after some elementary reduction, the system of equations (4.15) and (4.17) reduces to the
single resolvent

(4.30)

from which, in the case of hinged edges x = 0 and x = a, the smallest bifurcation value of the parameter m

(4.31)

which is obtained when n = 1, is established using the representation 	 = 	0cos(n�x/a), n = 1, 2, . . .. By virtue of the
conditions 	 �= 0, w �= 0, � �= 0, the form of loss of stability of a column corresponding to this formula is of the
bending-torsional type.

Note also that, in the case of pure bending of a column in the xy plane by a moment m, it is sufficient to replace the
quantity Jy in formula (4.31) by the quantity Jz.

4.5. Axial compression of a column accompanying its simultaneous bending in the xz plane

In the case being considered Q0
x == pF, M0

z = m, and the system of equations therefore decomposes into two
unconnected systems: (4.20) and

(4.32)

The first and fourth bifurcation values of the load p, which are determined by the first and fourth formula of (4.22),
follow from Eq. (4.20), and Eq. (4.32) reduce to a single resolvent

(4.33)

by which the bending-torsional FLS of the column is described.
If the parameter rm is introduced in accordance with the relation

(4.34)

where Wv is the moment of the stiffness of a cross-section of the column with respect to the principal central y axis,
then, in the case of a hinged support of the edges x = 0 and x = a, representing the function 	 in the form 	 = 	0cos(�x/a),
we arrive at a quadratic equation, the roots of which are

(4.35)

where

for determining the bifurcation values of p.
Investigations showed that the real values of the critical load are determined by the root p−; it is obvious that

p− = Py/P when rm = 0.
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Table 2

rm E1/G13 = 7 a/b = 10 E1/G13 = 700 a/b = 10 E1/G13 = 700 a/b = 100 E1/G13 = 700 a/b = 100

h/b = 1 1/4 1 1/4 1 1/4 1 1/4

0.1 10 0 896 7 0 0 10 0
1 941 7 23666 694 10 0 941 7
2 3562 28 40592 2649 38 0 3562 28
3 7377 63 51430 5553 86 0 7377 63

10 37131 695 78700 30605 941 7 37131 695

In the case when G12 = G13, the values (1 − p−F/Py) × 105 for a column of rectangular cross-section with the
geometrical characteristics

are presented in Table 2 for h − b and h = b/4 and different values of the parameters E1/G13, a/b, rm. Note that, in the
case being considered, formula (4.34) can be represented in the form

so that the quantity rm characterizes the eccentricity of the point of application of the compressive force P with respect
to the centre of the rectangle (the case of extracentral compression of a column). The values of (p−F/Py) × 105 for
rm ≤ 3 when m ≤ hP/2 shown in Table 2 are of practical interest since, prior to loss of stability, significant buckling of
the column, which has not been taken into account in the equations constructed, is possible at higher values of rm.

Two basic conclusions follow from an analysis of the results obtained: 1) in the case of the joint action of axial
compression by a stress p and pure bending by a moment m, a reduction of the critical value p* = p− is always observed;
2) a significant and pronounced reduction in the value of p* when m �= 0 is only possible in the case of columns made
of a material with a low shear strength; this effect is amplified in proportion to the reduction in the relative length of
the column and the parameter h/b.

4.6. Trilateral compression of a column by stresses p, q2, q3

In the case being considered, Eqs (4.15) and (4.16) take the following form: the first equations of system (4.15) and
(4.16) are identical to the first equations of systems (4.24) and (4.25), and the second equations are identical to the
second equations of systems (4.19) and (4.20).

Eq. (4.17) takes the form

(4.36)

For the boundary conditions �′(x = 0) = �′(x = a) = 0 or �(x = 0) = �(x = a) = 0, the solution of this equation gives the
critical value

(4.37)

which corresponds to a purely torsional FLS of the bar.
The system of equations (4.15) and (4.16) reduces to two unconnected resolvents

(4.38)

by which problems concerning bending-shear FLS in the xz and xy planes are described.
We will now consider the solution of the first of these equations in greater detail. In order to do this, we relate the

stresses p and q3 by means of the relations p + q3 = p̃, q = r3p, by virtue of which

(4.39)
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Using these relations, we represent the first integral of the first equation of (4.38) in the form (c1 is a constant of
integration)

(4.40)

Here,

(4.41)

The general solution of Eq. (4.40) has the form

(4.42)

On subjecting this solution to the boundary conditions

we obtain the equality c2 = 0, while the characteristic equation

(4.43)

which has two forms of solutions, follows from the condition c3 �= 0.
The solution k = 0, when the first formula of (4.41) is used, leads to a bifurcation value of the load p̃

(4.44)

which corresponds to the appearance of related shear forms of neutral equilibrium.
When r3 → 0, which corresponds to the action of only a force p, it follows from inequalities (4.44) that

that is, we obtain the third of the bifurcation values (4.22) and, when p = 0, one of the solutions of Eq. (4.40) yields the
bifurcation value

which also corresponds to a shear FLS with preservation of the linear axis of the columns.
However, for r3 �= 0 when r3 > 0, p̃s∗ is always greater than G13. For example, when r3 = 1, it follows from relation

(4.44) that p̃s∗ = 4G13. At the same time, by virtue of the equality p
(1)∗ = ps∗ = (1 + r3)G13/r3, we have p

(1)∗ = 2G13.
The increase in p̃s∗ when r3 > 0 is physically explained by the fact that, when they act simultaneously on the column,

the compressive stresses mutually oppose the transformation of the initial rectangle into a parallelogram. At the same
time, for a given r3 < 0, the inequality p̃s∗ > 0, only holds when r3 < −1.

Second solution: ka = �, 2�, 3�, . . .. Using formula (4.41) and introducing the load parameter m into the treatment
using the formulae

we obtain the characteristic equation

(4.45)

When r3 = 0 (only a force p is acting), on putting n = 1, from Eq. (4.45) we find the smallest bifurcation values of
the parameter m

(4.46)

which corresponds to the well-known solution of the problem of the loss of stability of a column through a bending-shear
form.

When r3 = −1, the solution m* ≡ 0 follows from Eq. (4.45) and the solution p̃s∗ ≡ 0 follows from formula (4.44).
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Table 3

r3 0.1 1 10 100 −10 −100

k13 = 10−2

m1 1220 401 1210 10201 −810 −9801
m1 × 103 992 997 999 999 999 999

k13 = 1
m1 × 10 226 52 122 −1020 −82 −980
m2 × 103 536 764 991 999 989 999

k13 = 10−2

m1 × 102 1111 202 111 111 91 99
m2 × 103 11 19 108 914 −89 −985

Hence, in the case of a column which is loaded by the stresses �0
x = −p, �0

z = p (or �0
x = p, �0 = −p), the critical

values of the load parameters will be zero values, which correspond both to shear and bending-shear FLS.
In the case when r3 �= 0, the two bifurcation values of the load parameter m

(4.47)

corresponding to bending-shear FLS of the column are determined by the roots of Eq. (4.45). The values of these roots
m

f (1)
∗ = m1 and m

f (2)
∗ = m2, found for different values of the defining parameters k13 and r3, are presented in Table 3.

As would be expected, the values of m
f
∗ , which are of practical interest, are determined by the second (smaller) root

of Eq. (4.47) and have the smallest values when n = 1. When r3 > 0 in the case of small values of k13, they are close to
the values which are determined using formula (4.46), and, when k13 > 1, transverse shear in the column has a strong
effect on the value of m2. At the same time, it can be seen in Table 3 that, when r3 < 1, the losses of stability of the
column can also be determined by the first root of Eq. (4.45) (for example, by the values of m1 for k13 = 100 when
r3 = −10 and r3 = −100; they have their smallest values when n = 1).

5. Equations and problems of the stability of a column based on the use of kinematic relations in the
complete quadratic approximation

Starting out from the equation following from Eq. (4.11) when expressions (4.14) have been substituted into them,
we will first consider a problem concerning the stability of a column accompanying the formation in it of an initial
stress �0

12 = . If the remaining components of the initial stresses are equal to zero, the above mentioned equations
decompose into two unconnected systems

(5.1)

(5.2)

The system of equations (5.1) is reduced by means of simple transformations to a single resolvent of the form

(5.3)

In the case of hinged support of the edges x = 0 and x = a, the bifurcation value of the stress ,

(5.4)

which, by virtue of 	 �= 0, 
 �= 0, � �= 0, corresponds to a bending-torsional FLS of the column, follows from it.
At the same time, it can easily be shown that the second system of systems of equations (5.2) which have been

constructed is of absolutely no interest. The reason for this, judging from the results obtained earlier in Refs 5,6 is the
insufficient degree of accuracy of relations (4.1) and representation (4.6).
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5.1. Neutral equilibrium equations

It follows from the analysis of previous results5,6 that, in the case of the formation of the initial stresses �0
12, �0

13
in a column, instead of the incomplete relations (4.1) and (4.2) it is necessary to use the unsimplified (full) kinematic
relations of the form

(5.5)

(5.6)

and to use the representation

(5.7)

which corresponds to the Timoshenko model taking account of the transverse strains �2 and �3, instead of (4.6).
According to the adopted refined model of a column, the quantities E�� appearing in relations (5.5) will be determined

by the expressions

(5.8)

If it is accepted that �0
23 = 0 in the initial state then, in the case being considered, the linearized relations

(5.9)

which, on substituting the relations (5.8), take the form

(5.10)

have to be used instead of relations (4.8).
Then, using relations (5.8) and by virtue of the inequalities E22 �= 0, E33 �= 0, instead of (4.9) we arrive at the

variational equation

(5.11)

in which, in addition to (4.10), the notation

(5.12)

has been introduced.
The six differential equations (4.11), the boundary conditions (4.12) and the two additional equations

(5.13)

and the boundary conditions corresponding to them

(5.14)

follow from Eq. (5.11).
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The required relations of the form (4.14) for the stresses and moments appearing in Eqs (4.11) and (5.13) are
obtained by substituting expressions (5.10) into formulae (4.10) and (5.12):

(5.15)

(5.16)

The notation for the stresses and moments of the initial state of the column

(5.17)

has been introduced here.
The elasticity relations of the form (5.16) which have been constructed contain a number of unimportant terms that

can be discarded without any loss of richness of content of the problems which are formulated on their basis. In order
to carry out such simplifications, while remaining within the framework of the degree of accuracy of the relations in the
classical theory of columns, we will assume that it is permissible to determine the normal stresses �0

11 using formula
(4.13) and the shear stresses �0

12 and �0
13 using the formulae

(5.18)

where M0
tor and Q0

y, Q
0
z are the torsional moment and the shearing forces in the cross-sections of the column in its

initial state.
When formulae (4.13) and (5.18) are used for quantities of the initial state appearing in relations (5.16), in addition

to expressions (5.17) we have the exact formulae

(5.19)

and we also assume that
∫ ∫

z3dF = 0,
∫ ∫

y3dF = 0,
∫ ∫

�0
11zydF = 0.

As a result, instead of relations (5.16), we arrive at simplified relations of the form

(5.20)
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In order to carry out further analysis and a possible simplification of relations (5.15) and (5.20) we return to the
non-linear kinematic relations (5.5). Introducing expressions (5.8) into them, for �1, �2 and �3 we obtain the relations
(for �1 with an accuracy up to z2(0), y2(0), zy(0) which is customarily accepted in the theory of columns, plates and
shells)

(5.21)

and the relations

(5.22)

for the shear strains.
It is seen that the equalities �̃12 = y�′

2 and �̃13 = z�′
3 hold for the terms �̃12 and �̃13 if the formulae

are used to calculate �2 and �3 which, as has been shown in Refs 3,4, are inconsistent and incorrect. In the theory of
thin shells, terms of these forms are usually neglected.8,9

As a result of the simplifications introduced above, we arrive at the following expression (putting �23 ≈ 0) for the
variation in the potential energy of the deformation of the column

(5.23)

where the notation

(5.24)

has been introduced.
We linearize relations (5.24) in the neighbourhood of the initial stress state, prescribed by the stresses

Q0
x, Q

0
y, Q

0
z, T

0
y , T 0

z and the moments M0
y , M0

z , M0
tor. Then, when account is taken of formulae (4.13), (5.18) and

(5.19) for Q∗
x, Q

∗
y, Q

∗
z , M

∗
y , M∗

z , T ∗
y , T ∗

z , we obtain the same expressions which are contained in equalities (5.15) and
(5.20), and simplified expressions of the form

(5.25)

are obtained for the other stresses and moments characterizing the neutral equilibrium of the column.
It is seen that in the expression for M∗

x according to the first formula of (5.25) and unlike in the second expression
of (5.20), the term JpQ0

x�′/F is missing. On account of this, the solutions for p* of the corresponding equations
constructed from (4.12) and (5.13), when the simplified relations are used in the case of axial compression of a column,
only reduce to formulae (4.22) since the torsional FLS of the bar accompanying its axial compression is not described
by them. At the same time, the simplified expressions derived in this section turn out to be more interesting than the
relations in Section 4 in the case of other forms of the initial stress state. The solutions of a number of new non-classical
problems of the stability of a column, which are constructed below, serve as a confirmation of what has been said.
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5.2. Pure bending of a column by end bending moments M0
z = M

In the case being considered, the system of equations (4.11), (5.13) decomposes, when the corresponding relations
from (5.15), (5.20) and (5.25) are used, into the two unconnected systems

(5.26)

(5.27)

The first equations of systems (4.32) and (5.26) only differ in the coefficient g11 in (5.26) instead of E1 in (4.32),
the bending-torsional FLS of the column is described by them and the first, fourth and fifth equations of system (5.27)
enable us to establish the relations (c1 is a constant of integration)

(5.28)

When they are used, the remaining two equations of system (5.27) reduce to a single resolvent (c2 is a constant of
integration)

(5.29)

by which the bending-shear FLS of a column is described. In the case of the hinged support of its edges, the formula

(5.30)

which reduces, when n → ∞, to the value m
fs
∗ = 0, follows from Eq. (5.29) for determining the bifurcation values of

the bending moment.
In content, this result is analogous to the result obtained in Ref. 18 for a three-layer beam in the case of pure

bending. However, there are fundamental differences between them: in a three-layer beam mmin∗ has a finite positive
value, which is interpreted as the work done in the bending of a separate compressed external layer accompanying the
loss of stability of the beam as of a whole and, in the case being considered, the hypothetical external layers have a
zero characteristic bending stiffness in a homogeneous beam.

Hence, in the case of the pure bending of a column, only the realization of the bending-torsional FLS established
in Subsection 4.4 is possible and this is accompanied by torsion and bending in a direction perpendicular to the plane
of action of the external bending moment.

It should be noted that, in the treatment of the joint action on a column of an axial compression p and a bending
moment M0

z = m, the system of equations (4.11), (5.13), when relations (5.15), (5.20) and (5.25) are used, also splits
into two unconnected systems of equations. The first of these is identical to the system of equations (4.8) if g11 is
replaced by E1 and the bending-shear FLS, which leads to the same trivial result obtained above in the form of formula
(5.30), will be described by the second system.

5.3. Pure torsion of a column with a moment M0
tor = m

In the case being considered, the system of equations (4.11), (5.13), when the corresponding relations from (5.15),
(5.20) and (5.25) are used, also splits into two unconnected systems of equations

(5.31)

(5.32)
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of which the first can be reduced to a single resolvent of the form

(5.33)

In the case of a hinged support of the edges, sections, the bifurcation value of the torsional moment

(5.34)

which corresponds to a purely flexural FLS of the column, follows from Eq. (5.33).
By analogy with relations (5.28), the relations (c1 is a constant of integration)

(5.35)

are determined from the first and the last two equations of system (5.32). When they are used, the second equation of
the system is transformed to the form

(5.36)

and the second bifurcation value of the torsional moment

(5.37)

which corresponds to a purely torsional FLS of the bar, follows from this.
Note that the values of M∗

(1) and M∗
(2) which have been found are of the orders M∗

(1) ≈ E1a
3�4, M∗

(2) ≈
E1a

3�3√G/E2 if E2 ≈ E3, b ≈ a�, h ≈ a�, � � 1. Consequently, M∗
(1) ≈ M∗

(2) if
√

G/E2 ≈ �.

5.4. A column under conditions of pure shear

We will assume that, in the column, Q0
z �= 0 and the remaining internal stresses and moments of the initial state are

equal to zero. In the case being considered, the system of equations (4.11), (5.13), when the corresponding relations
from (5.15), (5.20) and (5.25) are used, splits, as in the previous case, into two systems of equations

(5.38)

(5.39)

The FLS of the bar is described by the first system (5.38) which has been thoroughly investigated5 in the case of
a column in the form of a strip and the second system (5.39), consisting of three equations, reduces to of a single
resolvent of the form

(5.40)

In the case of hinged support of the edges of the column, the bifurcation value

(5.41)

which corresponds to a previously unknown bending-torsional FLS of the column, follows from this.
It can be shown that, in the case of real columns, the value of Q∗

z , determined using formula (5.41), is much smaller
than the value of Q∗

z , determined by the solution of Eq. (5.38).
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6. Classical and non-classical forms of loss of stability of an orthotropic cylindrical shell under torsion

6.1. Formulation of the problem

We shall consider a cylindrical shell of thickness t = 2h, with a radius of the middle surface R and a length L made
of an orthotropic material with the elastic characteristics E1, E2, G12, v12, v21 = v12E2/E1 and which is loaded at the
edges x = 0 and x = L by a torsional moment M. We will assume that, in the initial (subcritical) state of the shell, the
stress state which is formed in it has a zero moment and is solely characterized by the single non-zero value of the
linear shear force T 0

12 = S = M/(2�R2). By virtue of the relations

the linearized neutral equilibrium equations of general form constructed in Section 2 can be represented in the case
being considered in the form

(6.1)

Here ∂x and ∂� are differential operators with respect to the axial and angular coordinates x and �; a similar notation
will henceforth be used for differential operators.

The last two equations of system (6.1) are relations between the shearing forces T13 and T23 and the internal
bending and twisting moments M11, M22, M12 = M21. According to the Kirchhoff-Love model, when �i = −
i and with
displacements u1 = u, u2 = v, w of the points of the middle surface, the latter are consented by the elasticity relations

(6.2)

where

The relations

(6.3)

hold for the remaining internal stresses occurring in system (6.1).
System (6.1)–(6.3) differs from the known equations of the theory of the mean flexure of shells by the presence

of the underlined terms in relations (6.3) and, due to these terms, one of the possible forms of loss of stability of a
cylindrical shell under torsion was found in Ref. 6 within the framework of the equations of membrane theory when
the assumptions

were made. It is purely torsional and a bifurcation value of the stress S

(6.4)

corresponds to it.
It will be shown below that, besides the above mentioned FLS and the two classical FLS, which have been thoroughly

studied up to the present time in the case of isotropic shells,19 new FLS which are unknown in the literature are also
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described by the system of equations which has been constructed. To investigate these, we reduce the system constructed
to a system of three equations in the displacements u, v, and w

(6.5)

where

(6.6)

(6.7)

If we put T = 0 and c = 0 in the first two equations of system (6.5), we arrive at the neutral equilibrium equations of
the classical theory of shallow shells, on which the investigations into the stability of cylindrical shells under torsion
that are known in the literature are mainly based.

6.2. Forms of loss of stability described by the equations of membrane theory

When c2 = 0, which corresponds to the introduction of the assumptions T13 = T23 = 0 of membrane theory, the system
of equations (6.5) can be represented in the form

(6.8)

The first two equations of system (6.8) enable us to construct the following differential relations

(6.9)

where

On applying the operator D to the third equation of system (6.8) and taking account of the expressions for the
operators (6.6), after some reduction we obtain the resolvent

(6.10)

where

(6.11)

It can be shown that, according to relations (6.9), equations of the form

(6.12)

in which the variables u and v are the unknowns, also hold.
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If it is assumed that the function w has zero variability in the peripheral direction �, that is, w = w(�), then Eq.
(6.10) takes the form

(6.13)

Subject to the condition∂����w �= 0, the bifurcation value of the load parameterT ∗
(1) = √

g2(1 − v12v21), which corre-
sponds to formula (6.4) which was derived earlier, also follows from this equation.

We will now adopt the representation

(6.14)

for the function w, which corresponds to the formation of a single half-wave along the generatrix and a single half-
wave in the peripheral direction of the shell. After substituting expression (6.14) into Eq. (6.10) and integrated it using
Bubnov’s method, a second order characteristic equation can be obtained, the roots of which are determined using the
formula

(6.15)

In the case of long shells with parameters �2R2/L2 � 1, the approximate formulae T1 ≈ L/�R, T2 ≈ �̃πR/L follow
from this. The smallest of these values is T2, which we take as the second bifurcation value of the parameter T:

(6.16)

We will now show that the value (6.16), which has been found, corresponds completely to the loss of stability of a
long cylindrical shell in a purely beam bending mode accompanying its torsion, which was established in the case of a
column with a linear axis in Subsection 5.3. To do this, in accordance with the adopted Timoshenko-type model (4.6),
we represent the displacements u, v and w in the form

(6.17)

where U, V and W are the displacements of the points of the axial line of the shell along the x, y and z axes of the
rectangular Cartesian system of coordinates, and �, 	 and � are the angles of rotation about these axes. If it is further
assumed that, during the deformation process, a cross-section of the shell x = const remains normal to the axial line
Ox after deformation, then the relations of the classical theory of columns � = V, 	 = −W are established between the
function �, 	 and V, W, and, using these relations, we arrive at the representation for the function u

(6.18)

A prime denotes a derivative with respect to x.
If the external load applied to the shell is conservative and there is no variation in its initial direction, then, according

to the results of Section 2, the variational equation

(6.19)

will hold in the neutral equilibrium state of the shell. In Eq. (6.19), the stresses Sij are determined within the framework
of the assumption that T13 = T23 = 0 using formulae (6.3), and the relations

(6.20)

are established for the quantities eij and 
i using relations (6.17) and (6.18).
Using (6.3) and relations (6.20), starting out from Eq. (6.19) we arrive at the homogeneous differential equation
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which only has a trivial solution and, also, at the system of two homogeneous equations

(6.21)

by which the neutral equilibrium of a thin shell is described according to the classical model of a column.
Eq. (6.21) reduce to a single resolvent of the form

(6.22)

from which, in the case of a hinged support of the edges x = 0 and x = L (within the framework of the theory of columns),
the minimum bifurcation value

(6.23)

follows with an accuracy 1 − v12v21 ≈ 1, which corresponds to formula (6.16).
Note that, with an accuracy of t/R + 1 ≈ 1, the result obtained is practically identical to the result established in

Subsection 5.3 in the form of formula (5.34) for the case of the twisting of a column by a moment M.
Hence, together with the torsional FLS, which can be realized for low values of the shear modulus G12 in the case

of shells of arbitrary length and in the case of long shells when R/L � 1, loss of stability by a purely beam bending
mode, which is almost precisely described by functions (6.17) and (6.18), is also possible.

When the equations of membrane theory are used, it is also advisable to consider the case when the number of
half-waves in the peripheral direction satisfies the equality n ≥ 2, that is, when the representation

(6.24)

is taken for the function w.
After substituting expression (6.24) into Eq. (6.10) and integrating it using Bubnov’s method, we arrive at the

characteristic equation

(6.25)

where � = �R/L. Since, according to expression (6.16), the estimate T ∗ ≈ �̃� holds in the case of long shells with
parameters �2 � 1, the formula

(6.26)

follows from Eq. (6.25) with an accuracy O(�2). This does not have any physical meaning by virtue of the fact that
T* → 0 when n → ∞.

6.3. Classical solutions of the problem of the stability of cylindrical shells under torsion*

In order to carry out further investigations of the problem, we shall start out from the general equations (6.5),
representing the first two of them in the form

(6.27)

where the operators

(6.28)

have been introduced. The following differential relations are established from Eq. (6.27):

(6.29)

∗ The results in this subsection were obtained jointly with V. A. Ivanov.
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Acting with the operator D* on the third equation of system (6.5) and taking account of relation (6.29), a resolvent of
the following form

(6.30)

can be obtained with an accuracy 1 + c2 ≈ 1. The differential expression for N(w) is given by formula (6.11).
Henceforth, we shall call those solutions of the problem which correspond to the retention in the differential

expression (6.11) of the parametric terms obtained using relations (6.3) but without retaining the underlined parameter
terms in them, classical solutions. In order to construct such solutions, an analysis of which in the case of isotropic
shells has been given in Ref. 19, it is advisable to make further simplifications to Eq. (6.30) which has been derived. For
this purpose, we introduce the well-known assumption18 that the loss of stability of a cylindrical shell under torsion
is accompanied by the formation of a small number of half-waves in the axial direction and of a large number of
half-waves in the peripheral direction, by virtue of which it is permissible to assume that

(6.31)

Furthermore, we now take into account that the estimate

(6.32)

which corresponds to formula (6.16), holds for the bifurcation value of the parameter T of a long shell.
When account is taken of relations (6.31) and (6.32), Eq. (6.30) can be represented in the simplified form

(6.33)

and, in the case of an isotropic shell, it is identical to the equation derived in Ref. 19 for investigating local forms of
loss of stability.

If representation (6.24), in which L = l (l is the length of a dent along the x axis accompanying loss of stability), is
introduced into Eq. (6.33) and it is integrated using Bubnov’s method, we arrive at the formula (�l = �R/l)

(6.34)

for determining of the bifurcation value of the load parameter T.
Unlike formula (6.26), it has a well defined mechanical meaning, since the critical loads for the loss of stability of

a shell of arbitrary length with the formation of local dents of length l along the x axis are determined by it.
On minimizing T* with respect to the parameter �, we obtain the equality

and, using this, we find that

that is, the smallest non-zero value of T* is obtained by the transition of a circular section into an oval (n = 2). In this
case,

(6.35)

and, for the parameter � = �R/l and the length of a dent l, we have the expressions

It can be shown by direct verification that the results obtained are in complete agreement with assumptions (6.31)
and (6.32) and, consequently, with the simplified equations (6.30) which have been adopted. However, to obtain the
FLS being investigated, the shell must have a significant length in order that the effect of the boundary conditions on
the value of T ∗

(3) can be neglected.
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With the aim of comparing the values of T* determined using formulae (6.16) and (6.35), we construct the ratio

(6.36)

It is seen that satisfaction of the inequality k1 > 1 is possible, in particular, in the case of shells of a sizable relative
thickness, that is, in the case of structures which can be classified as columns with respect to their geometrical
parameters.

In order to construct another classical solution of the problem, which has been presented earlier19 in the case of
isotropic shells, in addition to condition (6.31) and (6.32) we introduce the assumption

(6.37)

which enables us to carry out a further simplification of Eq. (6.33) and to represent it in the form

(6.38)

We shall adopt the representation18

(6.39)

which precisely satisfies the boundary conditions for a hinged mounting

when the conditions

are imposed.
Substituting expression (6.39) into Eq. (6.38) and equating the factors accompanying the same trigonometrical

functions to zero, we obtain the two formulae

(6.40)

that is, the equality

must be satisfied, which enables us to relate the number of half-waves m along the generatrix of the cylinder to the
number n by means of the formula

and, using this, the first formula of (6.40) can be reduced to the form

(6.41)

It was shown in Ref. 19 that a minimum of T is attained for a = 5.21 and b = 0.68, which leads to the fourth bifurcation
value of the loading parameter T

(6.42)

It should be noted that the result of the minimization of T* with respect to the parameters m and n leads to the values

(6.43)

which correspond to the absolute minimum of the parameter T ∗
(4). Since these values of n∗

(4) and m∗
(4) are non-integral,

we must seek the minimum of T ∗
(4) using formula (6.41) for integral values of m and n in the neighbourhood of the

values (6.43).
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Using formulae (6.16) and (6.42), we construct the ratio

(6.44)

which is identical in structure to the ratio given by formula (6.36). Comparing formulae (6.36) and (6.44), it is seen that
the inequality k1 < k2 holds for one and the same relative length of the shell and small value of t/R, while the inequality
k1 > k2 holds for shells of intermediate length.

In conclusion, it should be noted that the solutions constructed correspond to practically the same form of loss
of stability and, of these, the first solution holds for long shells and the second for shells of intermediate length or
for short shells. Their structure is practically completely determined by the parametric terms in the third equation of
system (6.1), which are contained in the expressions for S13 and S23 and by the instantaneous perturbed state of the
shell accompanying loss of stability by the modes which have been investigated.

6.4. Non-classical bending FLS of a shell accompanied by the formation of shallow dents

We take the hinged mounting conditions

(6.45)

at the edges of the shell x = 0 and x = L and, of these conditions, the first three will be satisfied if the representations

(6.46)

are taken for the functions w and v.
By virtue of the first two conditions, the last condition of (6.45), when relation (6.7) is used, is written in the form

(6.47)

Adopting the representation

for the function u, from conditions (6.47) we establish the relations

Consequently,

(6.48)

Now, using representations (6.46) and (6.48) we construct the expressions

(6.49)
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in accordance with system (6.5), where

The structure of the functions (6.46) and (6.48) indicates that, in the case being considered, it is necessary to put
together the system of equations of the Bubnov method in order to find the solutions of Eqs (6.5) in accordance with
the approach described earlier in Ref. 20. It consists of the equations

(6.50)

and the analogous equations which are obtained by replacing cos n� by sin n� and sin n� by −cos n�.
Substitution of expressions (6.49) into Eqs (6.50) leads to the system of homogeneous algebraic equations

(6.51)

where

(6.52)

The relations

(6.53)

are established from the last two equations of system (6.51), and the use of these enables us to determine the bifurcation
value of the parameter T

(6.54)

where

from the first equation.
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Table 4

g1 R/L = 0.005 0.01 0.05 0.5

k3 × 102 m n k3 × 102 m n k3 × 102 m n k3 × 103 m n

t0 = 0.5
0.001 393 55 27 197 55 54 39 11 57 39 1 49
0.01 1242 58 9 621 29 9 127 20 31 124 2 31
0.1 3865 41 2 1932 72 7 386 2 1 386 7 34

t0 = 0.2
0.001 393 55 27 197 54 53 39 11 54 39 1 49
0.01 124 58 9 921 100 31 124 49 76 124 2 31
0.1 3862 41 2 1931 72 7 386 72 35 386 7 34

It should be noted that the equations obtained from Eqs (6.50) with the above mentioned replacements of cos n� by
sin n� and sin n� by cos n� also lead to the result which has been obtained. Consequently, representations (6.46) and
(6.48) contain two forms of solutions

(6.55)

(6.56)

which lead to the same formula (6.54). These solutions are non-classical in the case of the problem of the stability of a
cylindrical shell under torsion since only the underlined parametric terms in relations (6.3) participate in the derivation
of formula (6.54) while only the parametric terms, contained in the expressions for S13 and S23, participate in the
construction of the classical solutions presented in the preceding subsection.

Hence, in the case of the torsion of a cylindrical shell, loss of stability according to a fifth form, described by the
functions (6.55) and (6.56) is also possible, which is a bending mode by virtue of the conditionsw �= 0, v �= 0, u �= 0.
When it occurs, the minimum bifurcation value of the parameter T ∗

(5) is determined using formula (6.54) by minimizing
it with respect to the numbers m and n. The results of such calculations in the form of the ratio T ∗

(5)/T ∗
(2) = k3 and the

corresponding critical numbers m and n are shown in Table 4 for two values of the parameter t0 = t/R when �̃ = 1.
An analysis of the results obtained enables us to formulate the following main conclusions.

1◦. The value of the parameter T ∗
(5) depends strongly on the parameters R/L and G12/E1 and is practically independent

of the thickness of the shell, while the critical loads, corresponding to a classical FLS, are independent of the
parameter G12/E1 for the degree of accuracy in their determination which has been assumed.

2◦. The realization of loss of stability according to the FLS established in this section, earlier than according to the
other forms, is possible in the case of short shells and shells of intermediate length with of a sizeable relative
thickness t0 for of a small value of the parameter G12/E1, which is accompanied by the formation of a large number
of shallow dents in the peripheral direction of the shell.

3◦. In the case of long shells (when R/L ≤ 0.01), k3 > 1 for all values of G12/E1. The value of this coefficient decreases
as the parameter G12/E1 decreases.
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